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Attention is focussed here on a variety of cylindrically symmetric inhomogeneous 
electron liquids. These include separable potentials in which a general variation along the 
( z )  axis of cylindrical symmetry is combined with isotropic harmonic confinement in the 
( x , y )  plane. In this case, an explicit differential equation is derived for the Slater sum 
along the z axis by projecting out of the (off-diagonal) canonical density matrix the states 
with zero angular momentum about the axis of symmetry. Some attention is then given 
to the calculation of the Slater sum for a hydrogen-like atom in a uniform electric field of 
arbitrary strength. The model of a separable potential with harmonic confinement, 
though no longer exact, is shown to lead directly to a (now approximate) equation for 
the Slater sum along the z axis for the Stark effect in hydrogen. Finally some further 
progress is shown to be possible in the extreme high field limit. 

Keywords: Electron liquid; Slater sum; Stark effect 

1. INTRODUCTION 

We have been concerned in earlier work [ l ]  with differential equations 
for the Slater sum P(7, p) in simple quantum-mechanical problems of 
physical interest, examples being (i) the bare Coulomb field, (ii) free 

*Corresponding author. 
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530 C. AMOVILLI A N D  N. H. MARCH 

electrons on to which are switched a uniform electric field of arbitrary 
strength F and (iii) an initially isotropic harmonic oscillator perturbed 
by such a field F. In each of the cases (i)-(iii), an exact differential 
equation now exists for P( i ,  p). 

In the present work, we shall deal further with cylindrically 
symmetric systems. In fact, all three problems (i) to (iii) already are 
embraced by this classification. The long-term aim underlying the 
present study is to construct a differential equation for the Slater sum 
in the Stark problem for the hydrogen atom. 

The outline of the present paper is therefore as follows. In Section 2 
immediately below, we shall focus on the importance in cylindrically 
symmetric problems of projecting out the m = 0 states from the full 
Slater sum, i.e., those states which have zero angular momentum 
around the z axis of cylindrical symmetry. Then in Section 3 a specific 
example is given of the Slater sum for initially free electrons in a 
uniform electric field of arbitrary strength. This example serves to 
illustrate the intimate relation between P,,,=o(z, P) and the full Slater 
sum, again, however, restricted to the z axis. This relation has 
therefore prompted us in Section 4 to consider in detail how to 
construct the Slater sum in the presence of a general cylindrically 
symmetric potential. Section 5 constitutes a summary, together with 
some suggestions for future work. The Stark effect in hydrogen, 
especially in the high field limit, is treated in the Appendices. 

2. PROJECTION OUT OF SLATER SUM OF ZERO 
ANGULAR MOMENTUM (m = 0) STATES ABOUT 
THE CYLINDRICAL AXIS 

In this section we focus all attention on projecting out the m = 0 states 
from the Slater sum P ( 6  P )  which is the diagonal element 
(i= il = 72) of the canonical density matrix C(?,, 72, P)  defined by 

where the Qi’s are the normalized eigenfunctions, with corresponding 
eigenvalues E ~ ,  of the Hamiltonian 
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INHOMOGENEOUS ELECTRON LIQUIDS 

h2 z% = --v; + V ( 7 ) .  2m 

The canonical density matrix C satisfies the Bloch equation 

531 

(4 

with the completeness 'boundary' condition C(yi, 72, 0) = 6(7, - F ' ~ ) .  
When the potential V(F) is symmetrical under rotations around the 
z axis, C(71, 72, P )  takes the form 

m=-m 

where 4 ,  and 42 are the azimuthal angles of the points 71 and 72. 
Making use of the integral 

which is one for m = 0 and zero in all other cases, one can formally 
project out the sum over the m = 0 states by integrating in the same 
way over qbI - q52r namely 

where p is the cylindrical coordinate d m - .  
It is important to analyze this projection by looking at the symmetry 

of the states considered in the summation. The states with m = 0, in 
fact, have a o symmetry and are the unique states which do not have a 
node on the z axis. Hence, going on the diagonal and calculating the 
partial sum over the z axis (x = y = 0), one can recover the Slater sum 
as a function of z ,  namely 
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532 C. AMOVILLI AND N. H. MARCH 

2.1. Example of Harmonic Oscillator in an Electric Field 

To illustrate this result let us consider the case of an isotropic 
harmonic oscillator with frequency w in a uniform electric field F 
directed along the z axis. The canonical density matrix has the known 
expression [2] 

CFIl 72, P)  = [ 27r sinh(Pw)]3i2 W exp( g) 

x exp [ - i c o t h  (?)(?I - ? z ) ~ ]  

which inserted in Eq. (6)  gives the result 

[ W ]3’2 e x p ( c )  

(p :+p :+  (ZI + z 2 - 3 2 ) ]  

27r sinh(pw) 2w2 C,=o(p1, Z2r p21 z21 P )  = 

1 x exp [ - i c o t h  ($) (p :  + p i  + (ZL - ~ 2 ) ~ )  

x 10 [ -; (tanh (F) -coth( F ) )p lp2 ]  

(9) 

where 1, is a Bessel function of imaginary argument of order zero. 
Equation (9) evaluated on the diagonal and over the z axis finally leads 
back to the full Slater sum, which is 

J Y Z I P )  = [ 27rsinh(Pw)]3/2exP( W $) 
x exp[ - wtanh (F) ( z  - 5)2]. 
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IN HOMOGENEOUS ELECTRON LIQUIDS 533 

This intimate relation between the Slater sum calculated on the 
z axis and the sum over the m = 0 states suggests the derivation of a 
differential equation by expanding the partial density matrix C,,, = 

about the diagonal to which we turn immediately below. 

2.2. Expansion of rn = 0 Projection of Canonical 
Density Matrix Near Diagonal 

We follow the method given in our earlier work [ 11 but now working in 
cylindrical coordinates. Neglecting 4 derivatives in the Hamiltonian 
we start from the two Bloch equations 

in which the Laplacian has been written in terms of cylindrical 
coordinates. 

Now using the new variables 
2 2  

2 2  
t+ = P I  + P 2  

t- = p I - p 2  

z+ = ZI + z2 

z-  = zI - 2 2  

in the limits 

and then summing and subtracting Eqs. (1  1 )  and (12) we have 
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534 C. AMOVILLJ AND N. H. MARCH 

This system of differential equations will lead to an equation for the 
Slater sum provided the behaviour of C,,=, near the diagonal and in 
proximity of the z axis is known. 

Owing to the symmetry contraint the most general expression for 
C,=, up to the third order in length infinitesimals (Ap  or A z )  is 

cm=0 = ~ ( ~ + / 2 , p ) + a ( z + / 2 , p ) t + + b ( z + / 2 , p ) ~ 2  +c(z+/2 ,p ) t - z -  +h4 
(17) 

where 154 indicates more generally infinitesimals of higher order. 
Equation (17) other than the Slater sum contains explicitly three more 
unknown functions to be determined. The three functions a, b and c 
are not completely independent. 

3. DIRECT DETERMINATION OF SLATER SUM 
FOR INITIALLY FREE ELECTRONS IN A UNIFORM 
ELECTRIC FIELD 

Having set out above a near-diagonal expansion of the canonical 
density matrix, it will be helpful to digress, before determining the 
functions a, b and c above, to give a direct calculation of the Slater 
sum of plane waves modified by an electric field, and to relate this to 
the m = 0 projection. 

Starting from the Schrodinger equation in cylindrical coordinates 
for an electron in a uniform electric field F along the z axis 

a 2  d 2  Fz $I= Ell, (18) 1 
recognizing that for m = 0 the wavefunction does not depend on the 
variable 4, by setting 

and carrying out the separation we have 
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INHOMOGENEOUS ELECTRON LIQUIDS 

and 

FZ v = E ~ v .  
1 d ?  ) ( 2dz2 

535 

(21) 

The partial sum P,,, = o  (p, z, y) can be written formally as 

which can be factorized as follows 

the functions u and v being depending respectively on El and E2. 

The second factor in Eq. (23) is the well known Slater sum for an 
electron moving in a one dimensional space under a constant electric 
field [3] 

while the first factor can be calculated recognizing that the equation 

(25) 
1 
P 

li" + - 1'' + 2 E l ~  = 0 

is a Bessel equation solved by J o ( a p ) .  Inserting this solution in the 
'sum' over El, making the substitution El = y2/2 and replacing 
the summation by an integration over q2/2, one obtains [4] 

(26) 

where X is a constant which must be taken as 1/27r. Combining Eqs. 
(26) and (24) we have finally 
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536 C. AMOVILLI AND N. H. MARCH 

which corresponds to the diagonal elements of C,,7=o from Eq. (9) in 
the limit w + 0. 

4. SYSTEM OF DIFFERENTIAL EQUATIONS 
DETERMINING SLATER SUM ALONG AXIS 
OF SYMMETRY 

This is the point at which to return to the determination of the 
functions a, b and c introduced in Section 2. Since considerable simpli- 
fication results, we shall begin with the assumption that the potential 
energy V ( p , z )  entering the Bloch Eq. (3) is separable in cylindrical 
coordinates. 

4.1. Separability of Potential in Cylindrical Coordinates 

When the cylindrically symmetric potential V(p,  z )  takes the form 
Vl(p)  + V ~ ( Z ) ,  by exploiting the same separation of variables given in 
the previous section, two new equations are derived for u and v 
defining the states with m = 0, namely, 

and 

1 d 2  
(29) 

In the limits (14), to which our attention is focussed, we can 
integrate equation (28) near p = 0 by expanding u in a power series of 
p truncated at  the second order. 

Making the assumption that VI(0) is finite, up to the second order 
u is given by 

1 u( p) = u( 0) 1 + - ( VI(0) - El ) p  + . . . [ i  
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INHOMOGENEOUS ELECTRON LIQUIDS 531 

Now we can sum over all the possible m = 0 eigenstates in order to 
get the following two-dimensional partial canonical density matrix for 
small values of pl and p2  

where the sum Pi at the point p = 0 has the same value of the 
corresponding two-dimensional full Slater sum because the states with 
i n f o  have a node at the origin. 

Switching attention to the z dependence we must expand near the 
diagonal the one-dimensional canonical density matrix 

Using variables z +  and z -  defined in Eq. (1  3) we have 

1 1 
2 8 
1 1 
2 8 

v(z,) = v(z,./2) f -  v’(z+/2)zp +-v”(2+/2)22  + .  ’ .  

v(z2) = v(z+/2) - - v’(z+/2)zp + - v”(2+/2)21 + ’ ’ ‘ 
(33) 

and using Eq. (29) to replace second derivatives after few simple 
manipulations we can write 

Multiplying CI by Cz one gets C,,,=O expanded near the diagonal 
and near the z axis in the form (17) with an explicit expression for the 
functions a, h and c, namely 

”’”I oa a(.) = - VI (0) P ( z )  + Pz(=) 

b(2) = V2(:) P ( z )  + PI (0 )  ___ ~ - P ” ( z )  

2 
3 P z ( z )  1 

8P 8 

l [  

(35) c ( z )  = 0 
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538 C. AMOVILLI AND N. H. MARCH 

where the implicit dependence on /3 has been omitted and where 
P(z) = P,(O) P2 ( z )  is the full three-dimensional Slater sum evaluated 
over the z axis. It is important to remark that c results as identically 
zero when the full potential is separable in cylindrical coordinates 
while a and b satisfy the relation 

a p  PI! 
aa 8 

2 a + b =  VP+---  

which is instead quite general, as we will show below, for cylindrically 
symmetric potentials. 

4.2. General Cylindrically Symmetric Potential 

In order to study the more general problem we turn to the differential 
Equations (15) and (16) which are solved by the expansion (17) for 
C, = 0. 

Inserting the expression (17) in (15) and (16) the following two new 
equations are readily obtained 

(37) 
2c + b' = 112 VIP { 2a + b = v p  + aP/ap  - 118 

in which P and V are assumed evaluated at p = 0. 
The system of Eq. (37) shows clearly a relation of the three unknown 

functions a, b and c with the Slater sum and the potential. In the cases 
we have considered in our earlier work [l], namely (i) the Coulomb 
potential, (ii) the uniform electric field and (iii) the harmonic potential, 
the functions a and c can be explicitly expressed in terms of b and the 
Slater sum. Projecting out the m = 0 states from the canonical density 
matrix and by expanding following Eq. (17), the Table I can be easily 
generated using respectively the Blinder's variables [5] for the 
Coulomb potential, the Janussis' solution [3] for the uniform electric 
field and the Sondheimer and Wilson solution [6] for the harmonic 
potential. 

The functions reported in Table 1 for the cases (i)-(iii) when 
inserted in the system (37) lead to the same differential equations for 
the Slater sum obtained in our earlier work [l]. In this context it is 
important to remark that for a central field, owing to isotropicity, it is 
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INHOMOGENEOUS ELECTRON LIQUIDS 539 

TABLE I 
over the z axis for different model potentials 

Functions a and c from Eq. (17) in terms of b and the Slater sum evaluated 

- ( Z / r )  b + (P'/4z) -(P'/Sz ') 
-Fz b 0 
( 1 / 2 ) w 2  r 2  b + ( P ' / S z )  0 
( 1 / 2 ) w 2 r 2  -FZ b + ( P ' / S ( z  - F / w 2 ) )  0 
- ( Z / r )  - Fz b - ~ Z C  [A1 

This result involves the ansatz (38) 

sufficient to know the behaviour of the Slater sum over the positive z 
axis to complete the knowledge of the Slater sum itself. 

Turning to the table the last row refers to the Stark effect. In this 
case the expression given for a (z, p) is not proved but was obtained 
making the ansatz 

(38) 

which is valid for the separate cases (i), the Coulomb potential, and 
(ii), the uniform electric field. Making this assumption from the system 
(37) one can readily derive the following differential equation relating 
P and c: 

(39) 

Works actually in progress are considering the proof of the ansatz 
(38) and the way to determine explicitly c in order to transform the 
Eq. (39) into a differential equation for the Slater sum evaluated over 
the z axis in the Stark effect. 

4.3. Harmonic Confinement of Electrons 
in a General Potential Varying Along the z Axis 

It is of some interest now to discuss a last example in which 
perpendicularly to  the axis of cylindrical symmetry is switched on a 
field of harmonic forces and along the z axis a more general field. The 
potential has the separable form (1/2) w * p 2  + V(z ) .  In the Appendix 1 
this simple potential will be related to a model which simulates the 
Stark effect given an appropriate choice of w and of V ( z ) .  Here we 
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540 C. AMOVILLI A N D  N. H. MARCH 

limit ourselves to show the derivation of an exact differential equation 
for the Slater sum along z.  Again from the system (37) putting c = 0 
and eliminating b we have 

From Eq. (35) and substituting 

W 

(O' = 27~ sinh(pw) 

we have finally 

which is valid for any given potential V varying along z .  

5. SUMMARY AND FUTURE DIRECTIONS 

In calculating the Slater sum generated by cylindrically symmetric 
potentials, it is shown in the present paper that there is considerable 
merit in projecting out the m = 0 states, corresponding to zero angu- 
lar momentum about the z axis of cylindrical symmetry. Thus, in 
Section 2, it is demonstrated that the Slater sum near to the i axis is 
characterized by three functions, a, h and c, of only one spatial 
variable. Furthermore, a quite general equation is established relating 
a and b to the cylindrically symmetric potential. It is further shown 
that if the original cylindrically symmetric potential V(p ,  z ) ,  with 
p = d m ,  is itself separable, then the third function c above is 
identically zero. This enables a complete solution to be given for a 
potential in the form (1/2)w2p2 + V ( z ) .  

This has led us into the final part of the article: towards a differential 
equation for the (on z axis) Slater sum P ( z , p )  for the Stark effect in 
the hydrogen-like atom. Here away from the axis the potential energy 
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INHOMOGENEOUS ELECTRON LIQUIDS 54 1 

with Z the atomic number in the hydrogen-like system, is evidently 
cylindrically symmetric but not, however, separable in cylindrical 
coordinates (rather in parabolic coordinates). By analogy with the zero 
field case F = 0 in Eq. (43), the function c # 0. However, an ansatz has 
been proposed, generalizing the known result for F = 0 to  non-zero F, 
for the function c, and this has allowed us to make an entry in Table I 
for Ff 0, though, of course, the ansatz on which the entry is based 
remains to be established. 

Finally, it is relevant to refer to the high field work of Benassi et al. 
[7]. These authors study mainly the ‘ground-state’: which in their 
language has a finite lifetime, as first discussed by Oppenheimer [8]. 
They argue that, for Z = 1, the ground-state energy E in the limit of 
large F has a leading term in its high-field expansion of the form 

E 0: (F In F)2’3. (44) 

The factor epoEi appearing inside the summation over levels in the 
Slater sum suggests therefore that an ‘independent’ variable of the 
form { P(F1n F)2”} should enter P(7, P )  in the high field limit. This is 
to be contrasted with the variable ,L13 F2 = { ,Ll F2’3) }’ entering the free- 
field form of the Slater sum discussed earlier in Section 3 .  It is, 
presumably, the ‘interaction’ between the two terms in the potential 
(43) in the high field limit that modifies the free-field variable /3F2’3 
above to the form (for Z = 1) ,Ll F2I3(ln F)2’3 (compare Appendices 2 
and 3). 
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APPENDIX 1. MODELLING THE STARK EFFECT BY 
HARMONIC CONFINEMENT 

The potential (43), referring to the Stark effect, can be expanded, near 
the z axis and for large z ,  up to second order in p, namely 

z 
V(p,  Z )  = -Fz - - (1 - g) + . . . 

IZI 

In this regime perpendicularly to the axis the electron is subjected to 
elastic forces of ‘constant’ 

2 2  w =-. 
1Zi3 

This consideration has led us to formulate an approximate differ- 
ential equation for the Slater sum substituting w from Eq. (A.2), as 
a function of z now, into Eq. (42) in order to build a model for the 
Stark effect along the axis of symmetry. The equation 

1 
coth( /%J(z)) + V ( Z )  + V ’ ( z ) P  = 0, (A.3) 

where 

Z 
V ( Z )  = -Fz---, 

IZI 

may eventually be amenable to solution by numerical techniques. 
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INHOMOGENEOUS ELECTRON LIQUIDS 543 

APPENDIX 2. SCALING OF ENERGIES 
IN STARK PROBLEM FOR HYDROGENIC ATOM 
WITH EXTREMELY HIGH FIELD F AND NUCLEAR 
CHARGE 2 

Benassi et al. [7] demonstrate that in the extreme high field limit (see 
their Eq. 14) 

where 

Therefore 

and since from Eq. (A.5) 

one finds 

F2/3 
-2E = 

h ( 4 Z / F 1 / ' )  ' 

Consider now the relation (44) with 2 = 1 

E K F2f3(ln F) ' / ' .  (A.lO) 

This must mean that for large F (and Z = 1) the function h in Eq. 
(A.9) has the form 

(A.11) 

But the variable in h,  as seen in Eq. (A.9), for Z #  1 is proportional 
to Z I F  ' I 3 ,  hence 

I 
- K (In ( F / Z ' ) ) ' / ~ .  (A.12) 
11 
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544 C. AMOVILLI AND N. H. MARCH 

Thus, inserting this variable F/Z3 into the logarithm in Eq. (44), one 
reaches the desired form 

213 
E 0: F2/3{  In($)} . (A. 13) 

Naturally, in taking the form of h in Eq. (A.9) as in Eq. (A. 12), one 

Hence returning to the factor epBEi in the Slater sum for (now high 
has passed to the high field limit. 

field limit) the Stark effect one has the exponent 

,8F2I3{ In ( $ ) } 2 1 3 ,  (A.14) 

showing, as anticipated in the text, that the {In (F/Z3)}2’3 behaviour 
modifying the free field variable /3 F2/3  in the high field limit cames from 
interaction between the field and the Coulomb nucleus carrying charge 
Z. If, in the high field limit, Z was (somewhat artificially) taken as 
constant F1’3 ,  the one sees from Eq. (A.14) that one variable /3FZi3 of 
the free field Slater sum is regained in this high field ‘Stark-like’ regime. 

APPENDIX 3. USE OF EFFECTIVE POTENTIAL 
MATRIX TO RELATE BARE COULOMB FIELD 
AND HYDROGEN STARK EFFECT 

The purpose of this Appendix is to point out that the effective 
potential matrix U(71, 72, p) may afford a way to relate the bare 
Coulomb field problem (see Tab. I of this article) and the hydrogen 
Stark effect. Following Hilton et al. [9] (see also [lo]) we write the 
canonical density matrix CzF for the hydrogen Stark effect as 

Here F = 0 is the bare Coulomb problem. If in Eq. (A.15) we now 
put Z (the nuclear charge in atomic units) equal to zero, then from 
Section 3 it follows immediately that 

(A.16) 
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Thus, U is a natural enough tool to ‘switch’ the electric field F on to 
the bare Coulomb field density matrix Cis,. Substituting Eq. (A.15) 
into the Bloch Eq. (3), and using the same equation for F = 0, one is 
led to the following equation for Uza the Coulomb potential -Z/r  
only now appearing implicitly through the presence of Czo 

(A.17) 

Putting Z = 0 

(A.18) 

and it is readily verified by putting Coo in Eq. (A.17) that Eq. (A. 16) is 
the desired physical solution. 

In the high field regime we can return to the free field result (A.16) 
and note that, provided we keep (z, + z2)  bounded, the F 2  term will 
eventually dominate. This has motivated us to make the assumption 
that in the case F+ 00, already considered in Appendix 2, 

This then allows the m = 0 projection to be made from Eq. (A. 15) to 
yield 

p , = o  = c;ro exp[-WZF(PIr Z I .  p 2 ,  Z2r P ) ] .  (A. 19) 

This equation, combined with Eq. (A. 17), can be used by insertion 
of the earlier expansion (see Tab. I)  of C;Fo and the bare Coulomb 
field C;;’, but we shall not pursue the detail here. 
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